设备应用问题

1.大小核 device 配置注意事项

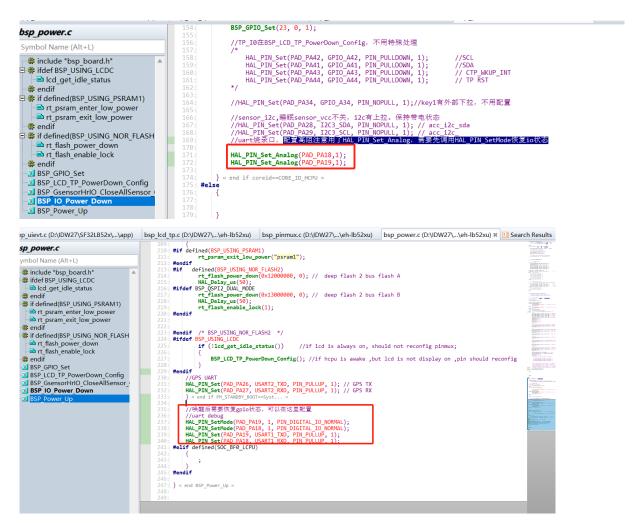
1.1. 大核要用小核上的 device 设备时,大小核必须都配置为打开。不然初始化后,小核会关掉 device。

例: spi3/pwm5 都是小核的设备,在大核使用时,需要同步在小核也配置为打开。 lcpu 目前代码是看该模块是不是开了,如果没开回去关掉这个模块电进行省电。但是 lcpu 跟 hcpu 又分开的,所以会导致 lcpu 把挂载在自身的 device 关掉了。大核来使用出现异常。

2.同一个 device 在大小核都要应用时,大核睡眠后,小核唤醒会读写失败。

例: spi3/I2C5

验证了几个方式,大核不用是就反注册,但是再用的时候要在注册一次。 最后还是采用了resume只小核跑的时候在配置。56x只存在大核睡了小核在跑的情景。不存在小核睡了,大核是唤醒状态。

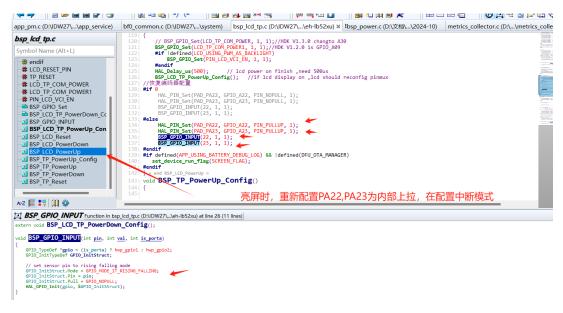

567hcpu Project - Source Insight 4.0 - [spi_dev.c (D:\LUKE\SF32LB56x\...\spi)] Symbol Name (Alt+L) return rt_spi_transfer(bus->owner, buffer, RT_NULL, size); # include <rtthread.h> # include <rtdevice.h> # include <drivers/spi.h> static rt_err_t **_spi_bus_device_control**(rt_device_t <u>dev</u>, spi_bus_device_read spi_bus_device_write struct rt_spi_bus *bus; bus = (struct rt_spi_bus *)dev; spi_bus_ops # endif switch (cmd) rt_spi_bus_device_init
spidev_device_open
spidev_device_close case RT DEVICE CTRL SUSPEND: break;
case RT_DEVICE_CTRL_RESUME: spidev_device_read
spidev_device_write
spidev_device_control
if ifdef RT_USING_DEVICE_OPS #ifdef BF0_LCPU ## spi_device_ops endif rt_spidev_device_init /* reconfigure bus */
bus->ops->configure(bus->owner, &bus->owner->config); break; return RT_EOK;
} « end _spi_bus_device_control » #ifdef RT_USING_DEVICE_OPS A-2 🗐 👯 🛍 🌼

2.睡眠唤醒注意事项

2.1. 52x 系列

2.1.1. 52x 配置高阻注意用了 HAL_PIN_Set_Analog, 需要先调用 HAL_PIN_SetMode 恢复 io 状态

52x 睡眠唤醒后不会去恢复 bsp_pinmux 里的 pin 脚状态。需要在代码里主动恢复统一管理可以睡眠前可以在 BSP_IO_Power_Down 配置睡眠的 pin 脚状态。唤醒后可以在 BSP_Power_Up 里恢复。



2.1.2. 52x 中断脚在睡眠前改了状态,要在唤醒前恢复中断模式。 不然无法使用。

例:

无感编码器睡眠后必须关闭上拉电源。一般客户为了节省成本,使用的内部上拉。

睡眠时就会配置为内部下拉,输出 0。避免漏电。用 HAL_PIN_Set 配置下拉后,改变了中断状态。需要在唤醒后配置。

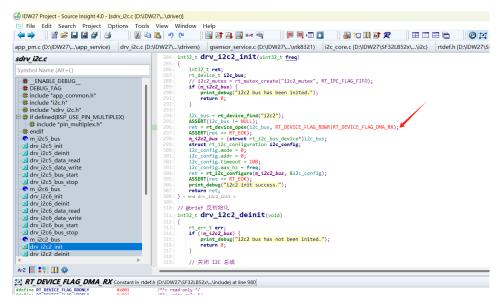
3.I2C 使用遇到过的问题

3.1. 线程优先级导致的 I2C 数据 err

问题原因: i2c 读写的线程优先级被更高的优先级打断, 导致数据异常

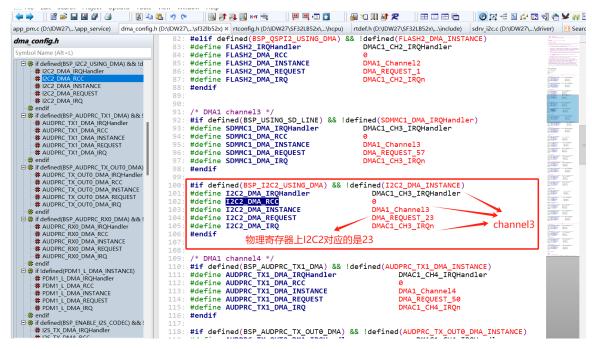
解决方法:

- 1. 把 I2C 读写有线程优先级提高
- 2. 配置 DMA 方式读写也能规避改问题,但是 DMA 通道有限。要看下有没有其他设备在用


```
| Clusion | Cl
```

3.2. I2C 设备配置 dma

1) menuconfig 打开


```
C:\Windows\System32\cmd.e × + ~
    (Top) → SiFli SDK configuration → On-chip Peripheral RTOS Drivers → Ena
        Enable I2C1 BUS
            I2C1 use DMA
oluti
        Enable I2C2 BUS
    [*] Enable I2C3 BUS
            T2C3 use DMA
    [*] Enable I2C4 BUS
串译分
            I2C4 use DMA
串译的
设备
SIF EZ
[程相
[程格
table
ootL
```

2) 注册 I2C 设备 open 时需要|上 dma

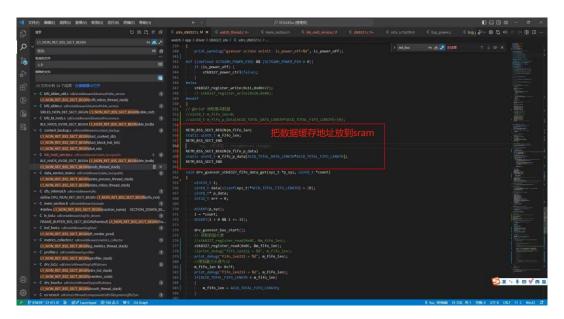
3) 检查对应 I2C 的 dma 底层是否有配置 dma 通道, 检查 dma_config.h

像是 52x 的 solution 代码,默认只给 I2C2 配置了 dma 通道。其他 I2C 通道没有配置。 配置新增是需要注意,I2C_DMA_REQUEST 是对应的物理寄存器地址,在芯片上是固定的。 每个外设不一样,需要看芯片手册。其他的几个参数都是对应的 channel,这个只要没被其他 的设备使用都可以配置。

下图是 52x 的 DMA_REQUEST 对应 REQUEST

52x <mark>DMA</mark> req table←

req_sel	DMAC1	DMAC2
0	mpi1	usart4_tx
1	mpi2	usart4_rx
2	/	usart5_tx
3	i2c4	usart5_rx
4	usart1_tx	/
5	usart1_rx	/
6	usart2_tx	btim3
7	usart2_rx	btim4
8	gptim1_update	/
9	gptim1_trigger	/
10	gptim1_cc1	/
11	gptim1_cc2	/
12	gptim1_cc3	/
13	gptim1_cc4	/
14	btim1	/
15	btim2	/
16	atim1_update	/
17	atim1_trigger	/
18	atim1_cc1	/
19	atim1_cc2	/
20	atim1_cc3	/
21	atim1_cc4	/
22	i2c1	/
23	i2c2	/
24	i2c3	/
25	atim1_com	/
26	usart3_tx	/
27	usart3 rx	/
28	spi1_tx	/
29	spi1_rx	/
30	spi2_tx	/
31	spi2_rx	/
32	i2s1_tx	
33	i2s1_rx	
34	/	
35	/	
36	pdm1_rx_l	
37	pdm1_rx_r	
38	gpadc	
39	adc0	
00	ddoo	

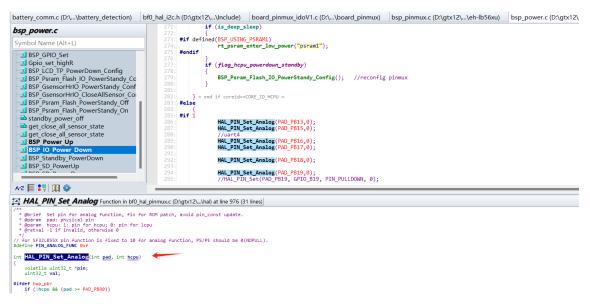

56x <mark>DMA</mark> req table←

req_sel	DMAC1	DMAC2
0	mpi1	usart4_tx
1	mpi2	usart4_rx
2	mpi3	usart5_tx
3	i2c4	usart5_rx
4	usart1_tx	usart6_tx
5	usart1_rx	usart6_rx
6	usart2_tx	btim3
7	usart2_rx	btim4
8	gptim1_update	gptim3_update
9	gptim1_trigger	gptim3_trigger
10	gptim1_cc1	gptim3_cc1
11	gptim1_cc2	gptim3_cc2
12	gptim1_cc3	gptim3_cc3
13	gptim1_cc4	gptim3_cc4
14	btim1	-
	100000000000000000000000000000000000000	gptim5_update
15	btim2	gptim5_trigger
16	atim1_update	spi3_tx
17	atim1_trigger	spi3_rx
18	atim1_cc1	spi4_tx
19	atim1_cc2	spi4_rx
20	atim1_cc3	mpi5
21	atim1_cc4	i2c5
22	i2c1	i2c6
23	i2c2	i2c7
24	i2c3	gptim4_update
25	atim1_com	gptim4_trigger
26	usart3_tx	gptim4_cc1
27	usart3_rx	gptim4_cc2
28	spi1_tx	audadc_ch0/gptim4_cc3
29	spi1_rx	audadc_ch1/gptim4_cc4
30	spi2_tx	gpadc
31	spi2_rx	/
32	i2s1_tx	
33	i2s1_rx	
34	sci_tx	
35	sci_rx	
36	pdm1_rx_l	
37	pdm1_rx_r	
38	pdm2_rx_l	
39	pdm2_rx_r	
40	pamz_rx_r	
41	dac0	
41	dac0	
43	gptim2_update	
44	gptim2_trigger	
45	gptim2_trigger	
46	audprc_tx_out_ch1	
47	audprc_tx_out_ch0	
48	audprc_tx_ch3	
	CONTRACTOR CONTRACTOR INC.	

3.3. 软件算法调用 I2C dma 读数据

1) 用 dma 读书时需要注意,需要配置一个全局的静态数组。如果缓存数据的地址不是固定的会导致 dma 搬数后,应用层返回的是 0 值。

2) 软件运行频繁,速率高时对数组的加载位置也有影响。默认注册的静态数组是在 psram,如果读数据频繁,数据多。在 psram 搬运可能来不及,会出现上层拿到的数据部分为 0。解决方法,把注册的静态数组放在 sram 里。这么做会让 dma 搬运速度提升,避免速度不够出现的 dma 搬运没完成。


4.GPIO 配置 FAQ

4.1. gpio 中断怎么配置,中断唤醒怎么配置

solution 代码里可以参考 button_service.c 跟 battery_comm.c

```
65: static void GpsEnableWake(void)
  #ifdef BSP USING PM
      int8_t wakeup_pin;
                                    中断唤醒,PB脚在大核使用
      uint16_t gpio_pin;
  可以直接唤醒大核。但是在小核使用
                                    只能唤醒小核,要同步消息订阅去唤醒大核
      rt_pin_mode(WAKE_PIN,PIN_MODE_INPUT);
   #ifdef BSP_USING_PM
...gpio = GET_GPIO_INSTANCE(WAKE_PIN);
      gpio_pin = GET_GPIOx_PIN(WAKE_PIN);
   #if(WAKE_PIN -> -96)
      wakeup_pin = HAL_LPAON_QueryWakeupPin(gpio, gpio_pin); 👞
                                                          pin脚注意区分大小核
       akeup_pin = HAL_HPAON_QueryWakeupPin(gpio, gpio_pin); 🖊
      RT_ASSERT(wakeup_pin >= 0);
                                                              唤醒使能
   ....pm_enable_pin_wakeup(wakeup_pin, AON_PIN_MODE_DOUBLE_EDGE);
#endif·/*·BSP_USING_PM·*/
     rt_pin_attach_irq(WAKE_PIN,PIN_IRQ_MODE_RISING_FALLING,um_loda_wake_irq_handler,NULL);
      rt_nin_irq_enable(WAKE_PIN.1)
    «-end-GpsEnableWake-»
                                 唤醒后,正常执行中断函数
```

4.2. 配置高阻

- 1) "pad"注意 PA,PB 不要搞错, PA 是 HCPU, PB 是 LCPU。
- 2) hcpu, 这里是区分大小核的, PA 脚是大核的 PIN 脚, 这里是 1. PB 脚是小核的 PIN 脚, 要用 0.

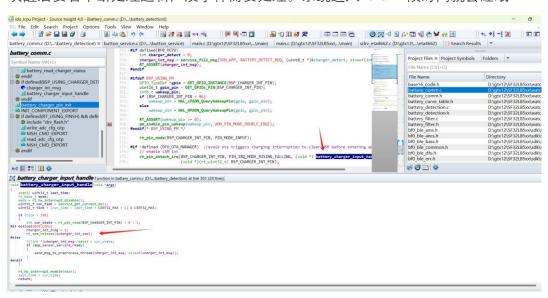
3.faq

- 1. I2C 报错怎么办
 - 1)检查外部上拉,或者内部上拉。确认上拉是否异常。外部上拉是否匹配, I2C 配置的速率,外设是否支持。

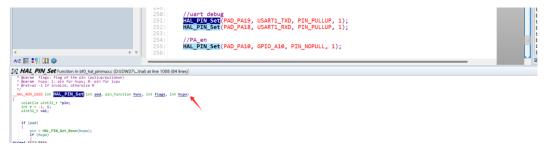
例: 跑 400k 速率,外部上拉用的 4.7K 或者 10k。I2C 实际测量出来的速率会不对。

2) 检查外设电源,是否异常。

例: 经常又同学的外设电源是跟其他地方共用的, 导致电源被关。外设断电, 导致 I2C 访问异常。

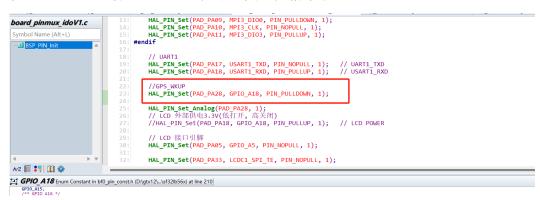

3) 上逻辑分析仪

逻辑分析仪,是调试驱动必备的。能分析具体数据。


2. uart 报错怎么办

由于 uart fifo 只有 1 字节。所有用 RX 中断方式会出现接收漏掉的情况。 需要用 RX DMA 来接收。

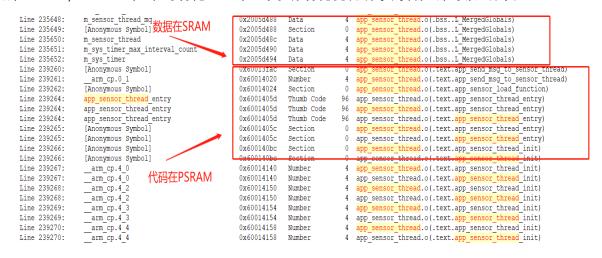
3. 中断唤醒后,怎么马上又睡眠了。应该怎么唤醒后去做用户逻辑 唤醒后要看中断处理逻辑,没事件需要处理。系统进入 idle 一段时间就会睡眠

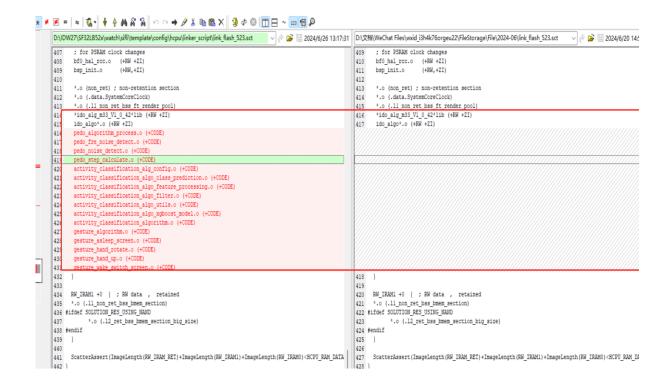


4. 为什么配置了 pin 脚不生效

- 1) "pad"注意 PA,PB 不要搞错,PA 是 HCPU,PB 是 LCPU。经常有同学搞错。PB 能在 HCPU 直接调用。PA 不能直接在 LCPU 调用。
- 2) func, 注意对照 pinmux, config 表看下是否支持, 注意是否配置错了。

例: PA28,对应的是 GPIO_A28, 不要复制, 粘贴忘记改了。




- 3) flags,内部上下拉状态。有外部上下拉的,不需要再配置内部上下拉了。这里对于通讯接口(I2C/SPI)统一推荐使用外部上拉,芯片内部上拉不可调节。大概在 18K 左右,速率高的时候会出现数据异常
- 4) hcpu, 这里是区分大小核的, PA 脚是大核的 PIN 脚, 这里是 1. PB 脚是小核的 PIN 脚, 要用 0.

经常有同学复制, 粘贴忘记改了。

5. 功耗优化(算法&数据搬运到 PSRAM&SRAM)

- 1) 算法先从 nor_flash 移到 psram (+RO)。编译后,可以搜相关函数。看地址是不是变 0x6 开头
- 2) 算法数据全移到 SRAM (+RW+ZI) 编译后,可以搜相关函数。看地址是不是变 0x2 开头
- 3) 常用算法移动到 SRAM (+CODE) (验证驱动&算法相关代码搬运到 sram 处理,功耗有降
- 低(爱都 IDW27/SIFLI523)平均功耗 30ua).对于有功耗优化诉求的客户都可以尝试下

